Forex Outlook Based on Machine Learning: Almost 81% Hit Ratio In 3 Days
Forex Outlook
The left-hand graph shows the currency predictor forecast from January 8, 2017, which includes long and short recommendations. The green boxes are long signals while the red boxes are short signals. The right-hand side shows the returns of the suggested currency pairs from January 8, 2017, to January 11, 2017.
Package Name: Currencies
Forecast Length: 3 Days (01/08/2017 – 01/11/2017)
I Know First Hit Ratio: 80.77%
View More Currency Forecasts
How to interpret this diagram:
Algorithmic Currency Forecast: The table on the left is the forex forecast for the forex outlook, produced by I Know First’s algorithm. Each day, subscribers receive forecasts for six different time horizons. The currencies in the 1-month forecast may be different than those in the 1-year forecast. In the included table, only the relevant currencies have been included. A green box represents a positive forecast while a red represents a negative forecast. The boxes are then arranged according to their respective signal and predictability values (see below for detailed definitions).
Forecast Performance: The table on the right compares the actual currency performance with I Know First’s prediction. The column titled “Forecast” shows which direction the algorithm predicted, and the column “% Change” shows the actual currency’s performance over the indicated time period. The “Accuracy” column shows a “v” if the algorithm correctly predicted the direction of the stock or an “x” if the forecast was incorrect. The “I Know First Hit Ratio” represents the algorithm’s accuracy when predicting the trend of the currency.
Signal: This indicator represents the predicted movement direction/trend; not a percentage or specific target price. The signal strength indicates how much the current price deviates from what the system considers an equilibrium or “fair” price.
Predictability: This value is obtained by calculating the correlation between the current prediction and the actual asset movement for each discrete time period. The algorithm then averages the results of all the prediction points, while giving more weight to recent performance. As the machine keeps learning, the values of P generally increase.
Please note-for trading decisions use the most recent forecast. Get today’s forecast and Top stock picks.